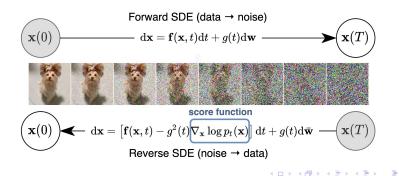
Diffusion Generative Modeling: Making Pictures from Noise with Math

Vasily Ilin



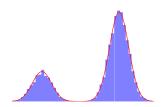
900

Two Types of Sampling

Two types of sampling:

- model-no-data classical sampling
- data-no-model generative modeling.

For example, given millions of pictures on the Internet, how to generate more pictures?



・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Langevin Dynamics

"Creating noise from data is easy; creating data from noise is generative modeling" (Song et al, 2020)

Langevin Dynamics

"Creating noise from data is easy; creating data from noise is generative modeling" (Song et al, 2020) As $t \to \infty$, the distribution of X_t converges to π :

 $dX_t = \nabla \log \pi(X_t) dt + \sqrt{2} dB_t$, $B_t :=$ Brownian motion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Langevin Dynamics

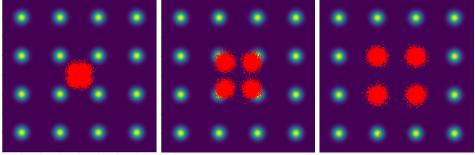
"Creating noise from data is easy; creating data from noise is generative modeling" (Song et al, 2020) As $t \to \infty$, the distribution of X_t converges to π :

 $dX_t = \nabla \log \pi(X_t) dt + \sqrt{2} dB_t$, $B_t :=$ Brownian motion

But Langevin dynamics gets stuck when π is multimodal! The mixing time is exponential in distance between modes.

sde non-annealed $\Delta t = 0.01$, T = 1.0

sde non-annealed $\Delta t = 0.01$, T = 10.0



Images are Multimodal

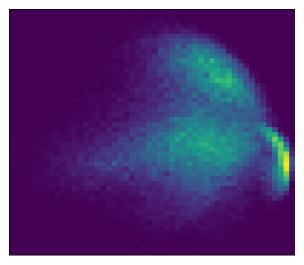


Figure: ICA on MNIST dataset

Reversed SDE

Idea: Reverse the Ornstein-Uhlenbeck process

$$dX_t = -X_t dt + \sqrt{2} dB_t, \quad 0 \le t \le T$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Reversed SDE

Idea: Reverse the Ornstein-Uhlenbeck process

$$dX_t = -X_t dt + \sqrt{2} dB_t, \quad 0 \le t \le T$$

The reverse SDE is

$$\begin{aligned} dX_t^{\leftarrow} &= X^{\leftarrow} dt + 2\nabla \log f_{T-t}(X_t^{\leftarrow}) dt + \sqrt{2} dB_t, \\ f_t &:= \mathsf{law}(X_t), \quad X_t^{\leftarrow} &:= X_{T-t}. \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof.

On the board...

Reversed SDE

Idea: Reverse the Ornstein-Uhlenbeck process

$$dX_t = -X_t dt + \sqrt{2} dB_t, \quad 0 \le t \le T$$

The reverse SDE is

$$dX_t^{\leftarrow} = X^{\leftarrow} dt + 2\nabla \log f_{T-t}(X_t^{\leftarrow}) dt + \sqrt{2} dB_t,$$

$$f_t := \mathsf{law}(X_t), \quad X_t^{\leftarrow} := X_{T-t}.$$

Proof.

On the board...

How to estimate the score $\nabla \log f_t$?

Score Matching

Approximate $\nabla \log f_t$ with a Neural Network s_t by minimizing the least-squares error.

$$L(s, f) = \mathbb{E}_f ||s - \nabla \log f||^2$$

= $\mathbb{E}_f ||s||^2 - 2s \cdot \nabla \log f + const(s)$
= $\mathbb{E}_f ||s||^2 + 2\nabla \cdot s + const(s)$
= $\frac{1}{n} \sum_{i=1}^n ||s_t(X_t^i)||^2 + 2\nabla \cdot s_t(X_t^i) + const(s),$

where X_t comes from the OU process:

$$dX_t = -X_t dt + \sqrt{2} dB_t, \quad X_0 \sim \pi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Algorithm

Step 1: Simulate the OU process

$$dX_t = -X_t dt + \sqrt{2} dB_t$$

starting from $X_0^1, \ldots, X_0^n \sim \pi$ for $0 \le t \le T$. **Step 2:** Train the NN by minimizing

$$\frac{1}{n}\sum_{i=1}^{n}\|s_t(X_t^i)\|^2 + 2\nabla \cdot s_t(X_t^i)$$

Step 3: Simulate the reverse process

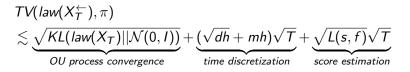
$$dX_t^{\leftarrow} = X^{\leftarrow} + 2s_{T-t}(X_t^{\leftarrow})dt + \sqrt{2}dB_t$$

for $0 \le t \le T$. **Output:** X_T^{\leftarrow} .

Fast Convergence

Theorem (Chen et al '23)

Without convexity assumptions on π , convergence is fast.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Proof.

By the data-processing inequality and **a lot of** stochastic calculus.

Generating Digits

I trained a NN to generate handwritten digits.

generated

generated

generated

enerated

generated

generated

similarity 0.87

generated

Figure: Generated digits (top) and their closest neighbors (bottom)

Conditional Generation

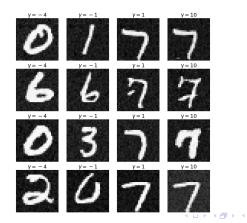
How to generate specific pictures on demand?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Conditional Generation

How to generate specific pictures on demand? Sample from the conditional distribution $\pi(x|c)$, e.g. c = "digit 7". Control the strength of conditioning with γ :

$$\begin{split} f_{t,\gamma}(x|c) \propto f_t(x)^{-\gamma} f_t(x|c)^{1+\gamma} \\ \nabla \log_x f_{t,\gamma}(x|c) &= -\gamma \nabla \log_x f_t(x) + (1+\gamma) \nabla \log_x f_t(x|c) \end{split}$$



3

Mode Capturing

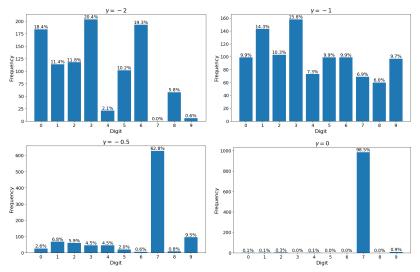
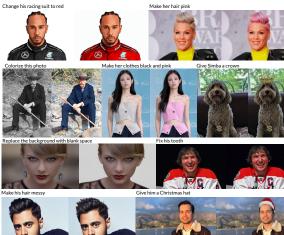


Figure: Digit frequencies conditioned on "7", anti-conditional ($\gamma = -2$), unconditional ($\gamma = -1$) and conditional ($\gamma = -0.5, 0$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Image Editing – Conditioning on Image+Text



Resources

- Yang Song's blog '21: "Generative Modeling by Estimating Gradients of the Data Distribution"
- Convergence paper, Chen et al '23: "Sampling is as easy as learning the score"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●