Diffusion Generative Modeling:
Making Pictures from Noise with Math

Vasily llin

Forward SDE (data — noise)

dx = f(x,t)dt + g(t)dw —)@

dx = [£(x,t) — ¢ (t) dt + g(t)dw @

Reverse SDE (noise — data)




Two Types of Sampling

Two types of sampling:
» model-no-data — classical sampling

» data-no-model — generative
modeling.

For example, given millions of pictures
on the Internet, how to generate more
pictures?
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“Creating noise from data is easy; creating data from noise is
generative modeling” (Song et al, 2020)
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Langevin Dynamics

“Creating noise from data is easy; creating data from noise is
generative modeling” (Song et al, 2020) As t — oo, the
distribution of X; converges to m:

dX: = Vlog m(X¢)dt + V2dB;, B: := Brownian motion

But Langevin dynamics gets stuck when 7 is multimodal! The
mixing time is exponential in distance between modes.

sde non-annealed At=0.01, T=0.1 sde non-annealed At=0.01, T=1.0 sde non-annealed At=0.01, T=10.0




Images are Multimodal

Figure: ICA on MNIST dataset
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How to estimate the score V log f;?

O



Score Matching

Approximate V log f; with a Neural Network s; by minimizing the
least-squares error.

L(s. F) = Eells — V log ]2
= FEy||s||?—2s - Vlog f + const(s)
= IE,cHs||2+2V -5 + const(s)

= Z |5 (X})||24+-2V - s:(X/}) + const(s),

where X; comes from the OU process:

dX; = —Xidt +V2dB;, Xo~T



Algorithm

Step 1: Simulate the OU process
dXt == —Xtdt + \/EdBt

starting from X},..., X§ ~mfor0<t < T.
Step 2: Train the NN by minimizing

*lest OIIP +2V - se(XY)

Step 3: Simulate the reverse process
dXT = X 4 2s7_+(X;7)dt + V2dB;

for0<t<T.
Output: X7 .



Fast Convergence

Theorem (Chen et al '23)

Without convexity assumptions on m, convergence is fast.
TV(law(X1), )
< VKL(law(XT)[IN(0, 1)) + (Vdh + mh)VT ++/L(s, )VT

OU process convergence time discretization score estimation
Proof.
By the data-processing inequality and a lot of stochastic
calculus.

O



Generating Digits

| trained a NN to generate handwritten digits.
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Figure: Generated digits (top) and their closest neighbors (bottom)
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Conditional Generation
How to generate specific pictures on demand?



Conditional Generation

How to generate specific pictures on demand? Sample from the
conditional distribution w(x|c), e.g. ¢ ="digit 7". Control the
strength of conditioning with ~:

fery(xl€) o ()77 Fe(x|)' 7

Vlog, fi(x|c) = =7V log, fir(x) + (1 + )V log, fi(x|c)

y=—4 y=—1 y=1 y =10
y=—4 y=—-1 y=1 y=10
y=-4 y=-1 y=1 y=10
y=-4 y=-1 y=1 y=10



Mode Capturing
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Figure: Digit frequencies conditioned on “7", anti-conditional (v = —2),

unconditional (v = —1) and conditional (y = —0.5,0).



Image Editing — Conditioning on Image-+ Text

Change his racing suit to red Make her hair pink

ﬁ QV' A
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Colorize this photo Make her clothes black and pink lee Simba a crown

Make his hair messy

Remove his tattoo




Resources

» Yang Song's blog '21: “Generative Modeling by Estimating
Gradients of the Data Distribution”

» Convergence paper, Chen et al '23: “Sampling is as easy as
learning the score”
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